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Generative deep learning enables the
discovery of a potent and selective
RIPK1 inhibitor

Yueshan Li 1,3, Liting Zhang 1,3, Yifei Wang 1,3, Jun Zou 1,3, Ruicheng Yang1,
Xinling Luo2, ChengyongWu1, Wei Yang1, Chenyu Tian1, Haixing Xu1, Falu Wang1,
Xin Yang1, Linli Li2 & Shengyong Yang 1

The retrieval of hit/lead compounds with novel scaffolds during early drug
development is an important but challenging task. Various generative models
have been proposed to create drug-like molecules. However, the capacity of
these generative models to design wet-lab-validated and target-specific
molecules with novel scaffolds has hardly been verified. We herein propose a
generative deep learning (GDL) model, a distribution-learning conditional
recurrent neural network (cRNN), to generate tailor-made virtual compound
libraries for given biological targets. The GDL model is then applied to RIPK1.
Virtual screening against the generated tailor-made compound library and
subsequent bioactivity evaluation lead to the discovery of a potent and
selective RIPK1 inhibitor with a previously unreported scaffold, RI-962. This
compound displays potent in vitro activity in protecting cells from necrop-
tosis, and good in vivo efficacy in two inflammatory models. Collectively, the
findings prove the capacity of our GDL model in generating hit/lead com-
pounds with unreported scaffolds, highlighting a great potential of deep
learning in drug discovery.

Identifying new starting active compounds that are substantially dif-
ferent in chemical structure from those already on the market or in
development is a crucial step in the early stage of drug development.
This task is mainly accomplished by high-throughput screening, either
physically or virtually, against sets of known chemical libraries. How-
ever, due to the limited structural diversity in existing chemical
libraries as well as repeated screening by various companies and
institutes, it is becoming more and more difficult to retrieve active
compounds with new scaffolds and establish intellectual property.
De novo molecular design that computationally generates new mole-
cules with desired properties has been proposed as a solution to this
problem1–3. Traditional de novo molecular design methods, which
include structure-based4–6, ligand-based7,8, and pharmacophore-based
methods9,10, involve a relatively manual process that requires an

experienced designer and explicit design rules. These methods are
also predominately fragment based, and the quality and diversity of
the generated molecules strongly depend on the fragment library and
the algorithm used for fragment assembly1.

Recently, generative deep learning (GDL) has emerged as a pro-
mising approach for de novo molecular design3,11, where deep neural
networks are employed as generative models. This approach is a
completely data-driven de novomolecular design strategy without the
need for explicit design rules, which can also avoid the fragment issue
mentioned above. It has attracted much attention with several GDL
models having been established to generate molecules, including
recurrent neural network (RNN)-based12,13, variational autoencoder
(VAE)-based14, generative adversarial network (GAN)-based15, graph
convolution network (GCN)-based16, and transformer-based models17.
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Detailed description and/or comparison of thesemodels can be found
in several recent reviews11,18,19. Among these models, the RNN-based
models are the most widely used ones, whose architectures are bor-
rowed from thenatural languageprocessing (NLP)fieldwithmolecules
being represented by a sequence of tokens, such as the simplified
molecular input line entry systems (SMILES)20. Owing to the mature
theory system of RNN, several RNN-based GDL models proposed
recently produced impressive results in generating newmolecules. For
example, Segler et al.12 iteratively fine-tuned a stackedRNN to generate
target-focused libraries and successfully reproduced active com-
pounds fromahold-out test set.Moret et al.13 utilizedRNN todevelopa
chemical language model (CLM) that enabled the discovery of new
molecular entities in a low data regime. Gómez-Bombarelli et al.14

implemented aVAEmodelwith RNNas a decoder,which could learn to
generate novel compounds with high fidelity. Kotsias et al.21 proposed
a conditional RNN (cRNN) model, in which additional molecular
descriptors or fingerprints were incorporated into the RNN initial
memory state to guide the subsequent generative process.

Although many GDL models including RNN-based ones showed
good performance in generating molecules, a majority of them are
designed to generate the best possible molecules to satisfy a pre-
definedgoal (goal-directed)22. These goal-directedmodels are strongly
dependent on the goal functions, whichmay lead to the generation of
molecules that are numerically superior but not practically useful18,23.
Besides, despite that most GDLmodels have been demonstrated to be
effective theoretically, very few have been validated by wet-lab
experiments11. Furthermore, chemical structures of molecules gener-
ated by thesemodels aremore or less similar to those of known active
compounds against the same target. To address these issues, we here
propose a GDLmodel based on a distribution-learning cRNN21,22, which
avoids the specification of goal function and can generate new mole-
cules following the same chemical distribution as training set mole-
cules. Our model incorporates transfer learning13,24, regularization
enhancement25,26, and sampling enhancement14,27 to enable the gen-
eration of molecules with previously unreported and diverse chemical
scaffolds. This model was then applied to the discovery of receptor-
interacting protein kinase 1 (RIPK1) inhibitors followed by compre-
hensive in vitro and in vivo validations.

RIPK1 is a serine/threonine protein kinase that participates in a
variety of signaling pathways involved in cell survival28. In particular,
RIPK1 is a key regulator of programmed cell necrosis (necroptosis)28,29,
which is closely related to the occurrence and development of various
inflammatory and immune diseases30. Mechanically, when necroptosis
is triggered by stimuli such as the tumor necrosis factor family of

cytokines, RIPK1 will firstly be activated. The activated RIPK1 then
associates with and phosphorylates its downstream protein RIPK3,
which subsequently recruits and phosphorylates the pseudokinase
mixed-lineage kinase domain like (MLKL)31,32. The phosphorylated
MLKLs form oligomers and translocate to the cytomembrane to exe-
cute necroptosis33. Owing to the central role of RIPK1 in necroptosis, it
is considered a promising target for treating necroptosis-related
diseases30,34. A number of RIPK1 inhibitors have been reported and five
are currently under clinical trials (phase I or II) for the treatment of
nervous system diseases and/or inflammatory diseases, including
DNL788 (Denali; NCT05237284), DNL758 (Denali; NCT04781816),
GFH312 (Genfleet; NCT04676711), SIR1–365 (Sironax; trial registered
on ANZCTR: ACTRN12621000745842p) and R-552 (Rigel and Lilly;
NCT05222399). Among them, only chemical structures of DNL758 and
SIR1–365 are disclosed at this moment. In this study, we collected
compounds with activity against RIPK1 from various publications and
patents and obtained a total of 1030 compounds (Supplementary
Table 1). Figure 1 shows representative compounds with different
scaffold types. However, most of these reported RIPK1 inhibitors are
not suitable for clinical studies due to low potency and/or poor kinase
selectivity. Therefore, more RIPK1 inhibitors with previously unre-
ported scaffolds and better potential as drug candidates should be
discovered.

In this work, we present a GDL model based on a distribution-
learning cRNN and then apply this model to the discovery of RIPK1
inhibitors. The rest of this article is organized as follows. We first
introduce the proposed GDL model, followed by applying this model
to generate a tailor-made virtual compound library targetingRIPK1 and
virtual screening against this library.We next describe the retrieval of a
potent and selective RIPK1 inhibitor (RI-962). The X-ray crystal struc-
ture of RIPK1 in complex with RI-962 is then illustrated. Subsequently
we present the in vitro and in vivo effects of RI-962 as well as its
pharmacokinetic characteristics and safety evaluation. Last are the
discussion and a detailed description of the methods used.

Results
Establishment of the GDL model
The proposed GDL model is based on a distribution-learning cRNN
architecture with the long short-term memory (LSTM) algorithm
used35; LSTM is an advanced version of RNN that is for tackling the
vanishing gradients problem. Different from traditional generative
RNN models, the cRNN architecture provides an explicit initial state
vector to guide the molecular generation toward a focused chemical
domain, which balances the output specificity between unbiased RNN
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Fig. 1 | Chemical structures of representative RIPK1 inhibitors with different scaffolds.
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and autoencoder21. The architecture of the proposed GDL model is
schematically shown in Fig. 2a. Molecules are represented by SMILES
strings20, whichare encodedby the “one-hot” representation for inputs
and outputs. Combined with the state vectors given by the feature
extractor as the conditional input, the cRNN model is trained to gen-
erate molecules following the same chemical distribution of given
training data in an unsupervised-learning manner. In the training

process, the cRNN is trained to reconstruct the input SMILES with
regularized state vector as the conditional input; in generating pro-
cess, the inference cRNN is used to generate molecules triggered by
the start token <SOS> with sampling state vector as the conditional
input (Fig. 2a). We applied three strategies to enhance the ability to
generate molecules against a specific target (RIPK1): transfer learning,
regularization enhancement, and sampling enhancement.
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Fig. 2 | Establishment and performance of the cRNN-based generative model.
a The diagram of cRNN-based generative model. b Schematic of transfer learning.
Molecules from the ZINC12 database (~16 million molecules) and known RIPK1
inhibitors (1030 molecules) are used as the source data and the target data,
respectively. c, d The reconstruction performance (c) and the generation perfor-
mance (d) of different models (n = 3). All results are shown as mean ± standard
deviation. Source cRNN: training on the source data; target cRNN: training on the
target data; transfer cRNN: training with transfer learning on the source and the
target data; enhanced source cRNN: training with regularization enhancement on
the source data; enhanced target cRNN: training with regularization enhancement

on the target data; our model: training with transfer learning and regularization
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rithm, where the interpolation factor α is a value between 0 and 1. Source data are
provided as a Source Data file.
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Transfer learning. To build a well-performing model from limited
known active compounds (target data, such as RIPK1 inhibitors here),
we applied transfer learning13,24 during the training process (Fig. 2b).
For general optimization, we pre-trained the generative model using a
large-scale dataset containing ~16 million molecules derived from the
ZINC12 database36 (source data). We then fine-tuned the model using
the target data (here the target data is comprised of 1030 known RIPK1
inhibitors, Supplementary Table 1). To verify the effect of transfer
learning, we evaluated the reconstruction and generation ability using
dynamic validation datasets; for these dynamic validation datasets,
100,000 molecules from the source data or 1000 molecules from the
target data were randomly selected for reconstruction evaluations,
and 100molecules from either the source data or the target data were
randomly selected for generation evaluations. The results showed two
remarkable improvements. First, the generalization ability, as assessed
by the balanced reconstruction (Fig. 2c) and generation performance
(Fig. 2d) on both the source data and the target data, was markedly
improved. The models trained only on the target data performed
worse on the reconstruction task (Fig. 2c), illustrating the importance
of transfer learning. Second, when compared with the models without
transfer learning, the convergence time was shortened considerably
without affecting the reconstruction accuracy (Supplementary Fig. 1).
Therefore, we adopted transfer learning in the subsequent model
implementation.

Regularization enhancement. To improve the generation ability of
the GDL model, we implemented regularization enhancement25,26 by
randomly adding Gaussian noise to the state vector during model
training (Fig. 2e). As a proof of principle of the regularization
enhancement, the dynamic validation dataset was evaluated. The
results indicated that the GDL model benefitted from regularization
enhancement: the enhanced model outperformed the other baseline
methods in terms of generation capability while maintaining similar
reconstruction performance (Fig. 2c, d).

Sampling enhancement. During the inverse design process of
generative models, new molecules are generated by sampling a ran-
dom state vector in the learned latent space. We adopted sampling
enhancement14,27 to generate new molecules from given state vectors.
The performance of three sampling enhancementmethods, i.e., single-
point sampling, linear-interpolation sampling, and spherical-
interpolation sampling, were evaluated on dynamic validation data-
sets containing 100 randomly selectedmolecules from the target data.
The linear-interpolation sampling (Fig. 2f) outperformed the other two
methods (Supplementary Fig. 2). Thus, linear-interpolation sampling
was implemented in our framework for molecule generation.

Generation of a tailor-made virtual compound library for RIPK1
and virtual screening
The GDL model described above was applied to build a tailor-made
virtual compound library for RIPK1. By running this model, we
obtained a total of 79,323molecules, in which duplicatedmolecules in
the training sets and molecules bearing structural alerts or reactive
groups had already been removed. To visualize the similarity between
the source data, the target data, and the generated data in chemical
space, uniformmanifold approximation andprojection (UMAP)37 plots
were generated. As shown in Fig. 3a, the molecules sampled from the
generated data (blue) were shifted from the source data (red) toward
the target data (purple) after transfer learning, indicating the effec-
tiveness of transfer learning for navigating through chemical space
from the source to the target.Moreover, the generatedmoleculeswere
essentially similar to active compounds (target data) in terms of their
physicochemical properties (Fig. 3b and Supplementary Fig. 3). Based
on the analysis of relative scaffold diversity (i.e., unique scaffolds/total
number of scaffolds)38, the generated data (26.4%) outperformed the
source data (1.2%) and the target data (14.1%) despite the fact that the
number of Murcko scaffolds39 in the source data (193,982) was much

larger than that in the generated data (20,924) (Fig. 3c). Notably, 99.8%
and 99.7% of the scaffolds in the generated data were different from
the scaffolds in the source data and the target data, respectively,
demonstrating the powerful ability of our model to generate addi-
tional scaffolds (Fig. 3c). Further, in terms of scaffold diversity40, the
generated data were obviously better than the target data and close to
the source data (Fig. 3d and Supplementary Fig. 4a). Regarding fin-
gerprint diversity40, the generateddatawere also better than the target
data for various types of fingerprints (Supplementary Fig. 4b–g).

We then carried out virtual screening against the generated
molecular library to obtain drug-like hit compounds targeted RIPK1.
First, in order to ensure the uniqueness of the scaffold, we removed
molecules that contain the same generic Murcko scaffolds39 or the
same sub-structures as those in the known RIPK1 inhibitors (target
data). Second, drug-like molecule screening was performed according
to several important properties associated with drug-like molecules
(see the Methods section). Third, pharmacophore-based virtual
screening was carried out. To this end, we established a full-feature
pharmacophore map41,42 of RIPK1 inhibitors based on the reported co-
crystal structures of RIPK1-ligand, which includes all the important
features and interactions between the RIPK1 receptor and ligands. This
pharmacophore map consists of 11 features: two hydrogen bond
acceptors (A1–A2), three hydrogen bond donors (D1–D3), and six
hydrophobic features (H1–H6) (Fig. 3e). Molecules that had at least
four features matched with the pharmacophore map were kept.
Through the above screening, 23,925 molecules remained, and these
filtered molecules still maintain the scaffold and fingerprint diversity
as that of the generated data (Fig. 3d and Supplementary Fig. 4).
Finally, molecular docking was used to prioritize the filtered mole-
cules. To visually observe the diversity, we generated tree maps
(TMAPs)43 according to RECAP44-based structural similarity and
molecular properties or docking scores; TMAPs are a technique for
unsupervised visualization of high-dimensional data that creates a 2D
layout of a minimum spanning tree constructed in the original space.
The TMAPs (Fig. 4 and Supplementary Fig. 5) vividly show the diversity
and distribution in the chemical space.

From the top-ranked 50 molecules (Supplementary Fig. 6), eight
molecules (RI-056, RI-413, RI-470, RI-539, RI-753, RI-962, RI-985, RI-
1155) (Supplementary Table 2) with relatively easier synthetic accessi-
bility were chosen to carry out chemical synthesis and bioactivity
evaluation; the synthetic accessibility of compounds was judged by
our chemical synthesis team. Although the eight molecules were
selected according to their synthetic accessibility, they still have awide
distribution in the TMAP (Fig. 4).

Retrieval of a potent and selective RIPK1 inhibitor
The selected compounds (Fig. 4 and Supplementary Table 2) were
chemically synthesized. Given the space limitations, here we only
describe the chemical synthesis of RI-962 (Fig. 5a); the chemical
syntheses of the other compounds are presented in the Supplemen-
tary Information. Commercially availablemethyl 5-bromo-1-methyl-1H-
indole-3-carboxylate (1) was methylated to give intermediate 2, which
was hydrolyzed and reacted with α-methylbenzylamine to afford
intermediate 4. Intermediate 4 reacted with bis(pinacolato)diboron to
give intermediate 5. The nucleophilic acyl substitution of 7-bromo-
[1,2,4]triazolo[1,5-a]pyridin-2-amine (6) generated intermediate 7,
which then reacted with intermediate 5 by Suzuki–Miyaura reaction to
produce compound RI-962.

The obtained compounds were then tested for their kinase inhi-
bitory activity against RIPK1. Four compounds showed activity with
half maximal inhibitory concentration (IC50) < 10μM (Supplementary
Table 2). Among them, RI-962 was the most potent one with an IC50

value of 35.0 nM against RIPK1 (Fig. 5b). The bioactivity of RI-962 was
further validated by ADP-Glo assay, which gave an IC50 value of
5.9 nM (Fig. 5c).
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To investigate the kinase selectivity of RIPK1, we performed
KINOMEscan profiling at a concentration of 10μM against a panel of
408 human kinases (Supplementary Table 3). To kinases that have an
inhibitory rate larger than 50%, further IC50 values against these kina-
ses were measured. In these assays, RI-962 showed very weak or no
activity against all thesekinases (IC50 > 10μM)exceptMLK3,which had
an IC50 value of 3.75μM, 107 folds less potent against MLK3 than
against RIPK1 (Supplementary Table 4).

X-ray crystal structure of RIPK1 in complex with RI-962
To understand the potency and selectivity of RI-962, we determined
the co-crystal structure of the RIPK1 kinase domain in complexwith RI-
962 at a solution of 2.64 Å (Supplementary Table 5). As shown in
Fig. 6a, RIPK1 adopts its inactive conformation that is characterized by
the unique orientation of the conserved Asp-Leu -Gly (DLG) [Asp-Phe-
Gly (DFG) in most other kinases] at the base of the activation loop
(Fig. 6b). In the inactive conformation (DLG-out), the aspartate side
chain of theDLGmotif faces into a hydrophobicpocket adjacent to the
ATP-binding pocket (called the allosteric site), while its neighboring
phenylalanine residue occupies the ATP-binding pocket. In contrast, in
the active state (DLG-in), the aspartate faces into the ATP-binding
pocket to facilitate catalysis and the phenylalanine side chain occupies
the allosteric site. RI-962 occupies both the ATP-binding pocket and
the allosteric site simultaneously, indicating a type II kinase inhibitor;
kinase inhibitors that occupy the ATP-binding pocket, the allosteric
site, or both sites concurrently belong to type I, III or II, respectively.

The triazolo[1,5-a] pyridine and indole moieties reside in the ATP-
binding pocket and the terminal benzene ring is located in the allos-
teric site (Fig. 6b). Four hydrogen bonds are formed: the aminotriazole
moiety forms two hydrogen bonds with the backbone N and C=O
groups of the residueM95; the amide group forms one hydrogen bond
with the gatekeeper residue D156, and another hydrogen bond with a
water molecule (Fig. 6c).

Compared with the crystal structure of RIPK1 in complex with
Cpd8, which is a known type II RIPK1 inhibitor but with poor kinase
selectivity, RI-962 induces an evident rotation of the αC-helix in RIPK1
by ~40° (Fig. 6d). Consequently, one of the catalytic triad residues45,
E63, is far away from K45, which breaks the salt bridge interaction
between E63 andK45. This rotation also results in a larger empty space
in the allosteric site. RI-962 fits snuggly into the re-shaped allosteric
site and made tight hydrophobic interactions with resides M67, F162,
V134, L129, L70, V75, and I154 (Fig. 6c). Overall, although RI-962 and
Cpd8 adopt similar binding poses, RI-962 induces a conformational
change around the allosteric site, which leads to a more suitable space
in the allosteric site to accommodate RI-962, and better interactions
between RI-962 and residues in the allosteric site. This together with
the non-conservation of residues in the allosteric site could be used to
interpret the high kinase selectivity of RI-96246.

Nec-1a (Fig. 1) is a highly selective RIPK1 inhibitor, which has often
been used as a positive control in necroptosis-related studies45,46. The
crystal structure of Nec-1a-RIPK1 complex shows that Nec-1a also
induces very similar conformational change as RI-962 does and
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plots showing the distribution of compounds over generic Murcko scaffolds in the
source data, the target data, the generated data, and the filtered molecules. e The
full-feature pharmacophore map of RIPK1. Source data are provided as a Source
Data file.
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occupies (only) the allosteric site (type III), rendering its kinase selec-
tivity (Fig. 6e). Compared with Nec-1a, RI-962 occupies both the ATP-
binding pocket and the allosteric site (Fig. 6e), implying bearing more
interactions with RIPK1 and hence presenting higher potency (RI-962,
35 nM vs. Nec-1a, 317 nM45).

Cellular and molecular effects of RI-962
The TSZ (TNFα, Smac mimetic, and Z-VAD-FMK)-induced cell
necroptosismodels47 were adopted to examine the cellular effect of RI-
962. Four cell lines (HT29, L929, J774A.1, and U937) were used in this
assay. As shown in Fig. 7a–d, RI-962 exerted a dose-dependent
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protective effect against necroptotic death, with EC50 values of 10.0,
4.2, 11.4, and 17.8 nM for HT29, L929, J774A.1, and U937 cells, respec-
tively, which also indicated a cell-independent activity. In addition, the
dual staining ofHT29 cells with CytoCalcein Violet 450 (for living cells)
and 7-AAD (for necrotic cells) visually showed that RI-962 inhibited
TSZ-induced necroptosis and improved cell survival in a
concentration-dependent manner (Fig. 7e, f). The positive control
GSK314509548 also displayed activity in these assays, but its potency
was relatively weaker compared with that of RI-962. Then, we knocked
out RIPK1 in HT29 cells using the CRISPR/Cas9 approach and found
that RIPK1 knockout HT29 cells were insensitive to TSZ-induced
necroptosis (Fig. 7g, h), implying that RI-962 plays its protective effect
against TSZ-induced cell necroptosis by targeting RIPK1.

We next examined the effect of RI-962 on the necroptotic sig-
naling proteins in intact cells. As shown in Fig. 7i, RI-962 markedly
inhibited the phosphorylation of RIPK1 and its downstream signaling
proteins RIPK3 andMLKL in a dose-dependentmanner, whereas it had
no effect on the expressions of RIPK1, RIPK3, and MLKL proteins.
Again, knockout of RIPK1 had the same effect (Fig. 7j). All these results
suggested that RI-962 protects cells fromnecroptosis by inhibiting the
kinase activity of RIPK1.

Pharmacokinetic characteristics and safety evaluation of RI-962
To further explore the druggability of RI-962, pharmacokinetic (PK)
experiments were conducted in Sprague-Dawley (SD) rats. RI-962
given intravenously (i.v.) (5mg/kg), intraperitoneally (i.p.) (20mg/kg)
and orally (p.o.) (20mg/kg) showed the area under the curve (AUC0–t)
values of 4526.1 h*ng/mL, 6459.7 h*ng/mL, and 1594.9 h*ng/mL,
respectively, indicating a proper drug exposure. It displayed a half-life
(T1/2) of 8.5 h and a bioavailability of 35.7% following i.p. administra-
tion. The metabolic stability of RI-962 in rats was good, with a clear-
ance rate (CL) of 18.5mL/min/kg. (Table 1 and Supplementary Fig. 7).

We further evaluated the maximum tolerated dose of RI-962 in mice,
which were well tolerated at doses up to 250mg/kg, with no observed
weight loss and no other side effects (Supplementary Fig. 8).

In vivo effects of RI-962 in animal models of inflammatory
disease
Necroptosis is associatedwith a variety of inflammatory disorders, and
RIPK1 is considered as a promising intervention target for these
diseases28,30,49,50. Thus, we evaluated the in vivo effects of RI-962 in two
animal models of inflammatory diseases: TNFα-induced systemic
inflammatory response syndrome (SIRS) and dextran sulfate sodium
(DSS)-induced inflammatory bowel disease (IBD).

We first examined the in vivo effects of RI-962 on the TNFα-
induced SIRS model. SIRS is a life-threatening inflammatory state that
results from the complex pathophysiologic response to infection,
trauma, burns, pancreatitis, or a variety of other injuries51. In this study,
a TNFα-induced SIRSmousemodel was used to examine the effects of
RI-962. As shown in Fig. 8a, a majority of the vehicle-treatedmice died
within 24 h (survival rate = 10%) after tail vein injection of TNFα. In
comparison, the survival rate was increased to 90% in the RI-962-
treated group. GSK3145095 also increased the survival rate (50%), but
less than RI-962. Treatment with RI-962 or GSK3145095 remarkably
reduced the TNFα-induced temperature loss (Fig. 8b) and the con-
centrations of proinflammatory cytokines (IL-1β and IL-6) in mice
(Fig. 8c, d). The hematoxylin and eosin (H&E) staining of heart, liver,
spleen, lung, and kidney showed that TNFα injection evidently
damaged the liver (as indicated by the inflammatory cell infiltration in
the portal area) and kidney (as indicated by a glomerular hemorrhage
and swellingwith neutrophil infiltration) (Fig. 8e), but hadveryweak or
no obvious impact on heart, spleen and lung (Supplementary Fig. 9).
Treatment with RI-962 attenuated damage to the liver and kidney
(Fig. 8e). We further explored the mechanism of action by western
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blot. As shown in Fig. 8f, RI-962 treatment substantially reduced the
level of phosphorated RIPK1 (pRIPK1) but had no impact on the RIPK1
protein, indicating the inhibition of RIPK1 kinase activity. The activa-
tion of downstream proteins, RIPK3 and MLKL, was also markedly

suppressed (Fig. 8f). Taken together, these results indicate that RI-962
ameliorated TNFα-induced SIRS by inhibiting RIPK1 activity.

We then evaluated the in vivo effects of RI-962 on the DSS-
induced IBDmodel. IBD is a chronic, debilitating intestinal diseasewith
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a variety of clinical manifestations. The main forms of IBD are ulcera-
tive colitis and Crohn’s disease52. Necroptosis is a major type of cell
death involved in the regulation of intestinal homeostasis in the
intestinal epithelium53–55. RIPK1 is thus regarded as a potential target
for IBD treatment56. In this study, we examined the effect of RI-962 in a
DSS-induced IBDmousemodel. As shown in Fig. 9a, DSS treatment led

to a rapid loss in mouse body weight from day 5 to day 11, and treat-
ment with RI-962 or GSK3145095 strongly ameliorated this loss of
body weight. Further, treatment with RI-962 or GSK3145095 markedly
reduced the DSS-induced shortening of colon length (Fig. 9b, c). His-
topathological analysis showed that RI-962 substantially decreased
tissue damage in the colons of DSS-treated mice (Fig. 9d). In DSS-
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induced colitis, numerous S100a9-positive cells (a marker of inflam-
mation) infiltrated into themucosa and epithelial layer of the damaged
colon (Fig. 9e), while no infiltration by S100a9-positive cells was
observed in the colons of mice treated with RI-962 (Fig. 9e). More
importantly, treatment with RI-962 or GSK3145095 dramatically
increased the survival rate of DSS-treated mice (Fig. 9f; 40mg/kg RI-
962 or GSK3145095 survival rate, 100% vs vehicle: 16.7%). In addition,
RI-962 treatment during DSS challenge substantially reduced the
content of proinflammatory cytokines (TNFα, IL-1β, and IL-6) in cul-
tured colonic tissue supernatants comparedwith theDSS controlmice
(Fig. 9g–i). Finally, the western blot assay was used to investigate the
effect of RI-962 on the RIPK1 signaling pathway. The results showed
that RI-962 reduced the levels of pRIPK1, pRIPK3, and pMLKL proteins
in the colonduringDSS challenge, but didnot impact the expressionof
RIPK1, RIPK3, and MLKL proteins (Fig. 9j), suggesting that RI-962
suppressed the RIPK1 signaling in the mouse model of DSS-induced
colitis.

Discussion
Developing a new drug is an expensive and time-consuming process
thatmight take over 1 billion dollars and over 10 years. Identificationof
hit/lead compounds with novel structures is the first and also a critical
step. The most common approach to retrieving new hit/lead com-
pounds is to screen existing chemical libraries by using high-
throughput screening methods. By this approach, one may not be
able to locate additional active compounds with different scaffolds
due to the limited chemical space of the existing compound libraries
that have already been screened over andover again. To this end, we in
this investigation proposed a GDL model to generate a tailor-made
compound library with previously unreported scaffolds, which allows
us to retrieve hit/lead compounds from the huge unexplored
chemical space.

The proposed GDL model is a cRNN-based model21. The
generative process of cRNN is conditioned by explicitly setting its

internal state according to desired properties. Current imple-
mentations of cRNN usually employ goal-directed strategies.
However, the effectiveness of the goal-directed model strongly
depends on the accuracy of the goal function. Ill-defined goal
functions can result in invalid molecular structures18,23. As an
alternative to goal-directed approach, the distribution-learning
strategy aims to generate molecules that resemble the given
dataset, which could achieve data-driven molecule generation
through unsupervised learning22. We therefore established a
distribution-learning cRNN model, in which three strategies
including transfer learning, regularization enhancement, and
sampling enhancement were incorporated. Transfer learning
shifted the data distribution of the latent space from the large
collection of the source data (ZINC12 database) toward the target
data (known RIPK1 inhibitors), enabling the generation of drug-
like and bioactive molecules. Regularization enhancement by
adding random input noise, which is considered equivalent to
introducing penalty terms in the objective function25,26, is bene-
ficial to improve the generalization performance of the GDL
model. Sampling enhancement is implemented by interpolating
between latent space during model generation, which improves
the likelihood of successful generation of target-specific mole-
cules with diverse chemical scaffolds.

Our GDL model has been successfully applied to establish a
virtual compound library against RIPK1. The generated library was
enriched withmuchmore new scaffoldmolecules comparedwith the
known RIPK1 inhibitors. Through a standard drug screening process
against the established compound library, we retrieved a potent and
selective RIPK1 inhibitor with a previously unreported scaffold. On
the one hand, this application example verified the effectiveness of
our GDL model. Despite that RIPK1 is a kinase, our GDL model could
be applied to different kinds of biological targets. The only require-
ment is that the biological targets must have a sufficient number of
known active compounds (target data). The bigger the number of
known active compounds is, the better the GDLmodel is expected to
perform. On the other hand, this application example led to the
identification of a potent RIPK1 inhibitor (RI-962) with a previously
unreported scaffold. Of note is that RI-962 displayed high selectivity
against other 407 kinases. It also showed potent activity both in vitro
and in vivo. Even so, this compound still has some unfavorable
properties that need further optimization in future, for example, low
oral bioavailability (Table 1). This situation is understandable because
the GDL model is not a panacea and we should not hold an extra-
vagant hope to directly generate a drug candidate by this model.
Overall, we discovered a lead compound with a previously unre-
ported scaffold against RIPK1 by using our proposed GDL model,
witnessing a successful application of deep neural network in early
drug discovery.

Methods
Data preparation
Compounds from ZINC12 database36 were used to construct the
source data for transfer learning (downloaded on August 20, 2020).

Table 1 | Key pharmacokinetic parameters of RI-962 obtained
in a preliminary pharmacokinetic assessment experimenta

Parameter RI-962

i.v. p.o. i.p.

Dose (mg/kg) 5 20 20

T1/2 (h) 2.1 ± 0.2 1.3 ± 0.2 8.5 ± 1.6

Tmax (h) 0.1 ± 0.0 0.8 ± 1.0 0.5 ± 0.0

Cmax (ng/mL) 12170.4 ± 1198.5 674.2 ± 424.7 3603.3 ± 693.3

AUC0–t (ng*h/mL) 4526.1 ± 546.0 1594.9 ± 891.8 6459.7 ± 1131.6

AUC0–∞ (ng*h/mL) 4538.1 ± 546.3 1604.5 ± 896.1 6609.3 ± 1121.4

Vss (L/kg) 0.4 ± 0.1 - -

MRT0-∞ (h) 0.4 ± 0.0 1.8 ± 0.2 2.8 ± 0.1

CL (mL/min/kg) 18.5 ± 2.1 - -

F (%) - 8.8 ± 5.0 35.7 ± 6.3
aData are shown as mean ± standard deviation; n = 3 animals.

Fig. 7 | RI-962 protected cells from TSZ-induced necroptosis.
a–dDose–response curves of RI-962 (n = 3) andGSK3145095 (n = 2) in TSZ-induced
HT29, L929, J774A.1, and U937 cell necroptosis models. Necroptosis of HT29,
J774A.1 and U937 cells was induced by TNFα (10 ng/mL), Smac-mimetic (100nM),
and Z-VAD-FMK (40μM). Necroptosis of L929 cells was induced by TNFα (10 ng/
mL) and Z-VAD-FMK (40μM). Cell viability was measured by CCK8 staining after
24h of inducing necroptosis. Data are presented as mean± standard deviation.
e Dual staining with CytoCalcein Violet 450 and 7-AAD in HT29 cells with/without
RI-962 and GSK3145095 treatment after TSZ-induced necroptosis for 24h.
f Statistic percentage of dead cells in the dual staining assay (n = 4). Data are pre-
sented as mean± standard deviation, **p-value <0.01, ***p-value <0.001 by two-

tailed unpaired Student’s t-test. g, h Knockout of RIPK1 desensitizes HT29 cells to
TSZ-inducednecroptosis. Cell viability wasmeasured byCCK8 staining after 24h of
inducing necroptosis (n = 3). Data are presented as mean± standard deviation. i RI-
962 inhibited the phosphorylation of RIPK1, RIPK3, andMLKL in HT29 cells. β-actin
was used as an internal control. Molecular weight (Mw)markers are shown at right.
The experimentwasperformed three timeswith similar results. jKnockout of RIPK1
inhibited the phosphorylation of RIPK3 and MLKL, and compound RI-962 had the
same effect.β-actinwas used as an internal control.Molecular weight (Mw)markers
are shown at right. The experiment was performed three times with similar results.
Source data are provided as a Source Data file.
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Known RIPK1 inhibitors (bioactive compounds) were retrieved from
ChEMBL57 and patents (<10μM) to form the target data. All these
molecules were encoded as SMILES strings, and then canonicalized
and standardized by removing stereochemical information, salts, and
duplicates using the RDKit package (v2019.09.2.0, www.rdkit.org). We
finally obtained a set of ~16 million molecules as the source data and
1030 bioactive molecules as the target data (Supplementary Table 1).

Implementation of the GDL model
The generative model reads the input SMILES string20 of a molecule
with “one-hot” representation and a state vector coded by the feature
extractor, and then converts them back to the SMILES string following
chemical rules. The generative model is a one-layer LSTM (256
dimensions) followed by a dense layer with a SoftMax activation
function to generate a probability distribution over all possible
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grammarproduction rules for each timestep. The featureextractor is a
one-layer bi-directional LSTM (512 dimensions) to convert the input
molecule to an initial state vector. In short, a cRNN takes a sequence of
input vectors x1:n = (x1,…, xn) and an initial state vector h0, and returns
a sequence of state vectors h1:n = (h1,…, hn) and a sequence of output
logit vectors o1:n = (o1,…, on) (Eq. (1)). The model cRNN consists of a
recursively defined function R (Eq. (2)), which takes a state vector hi�1

and input vector xi and returns a new state vector hi; another function
O maps a state vector hi to an output logit vector oi (Eq. (3)):

cRNN h0,x1:n

� �
=h1:n,o1:n ð1Þ

hi =R hi�1, xi

� �
, i≥ 1 ð2Þ

oi =O hi

� �
, i≥ 1: ð3Þ

During training, we trained the generative model to reconstruct
the training data by minimizing training loss L (Eq. (4)), which was
evaluated as the similarity between the original and reconstructed
vectors of molecular representations. Training loss L was computed
from the cross-entropy loss function with SoftMax activation (Eq. (4)):

L=
1
n

Xn
i= 1

�
XJ
j = 1

yi,j logpi,j

 !
ð4Þ

pi,j =
eoi,jPK
k = 1e

oi,k
, ð5Þ

where n is the batch size, J is the dimension of each molecular repre-
sentation, i is the ith vector, j is the jth dimensionof a vector, k is the kth

dimension of a vector, K is the set of all tokens, y is the vector of the
original molecular representation (label), and o is the vector of the
reconstructed molecular representation. The parameters of the gen-
erative model were then updated using AdamOptimizer with learning
rate of 0.0001 until convergence. Training loss was monitored and
visualized using TensorBoard. Transfer learning13,24 was implemented
by updating the parameters using the target data, based on the para-
meters of the converged pre-trained model using the source data.
Regularization enhancement25,26 was performed by adding a Gaussian
noise vector ξ to the hidden vector h0 (Eq. (6)):

hnoise
0 =h0 + ξ , ξm 2 Nðμ, σ2Þ, ð6Þ

where hnoise
0 is the regularized h0, ξ is the noise vector with the same

dimension of h0, ξm is the mth dimension of the noise vector ξ , and
Nðμ,σ2Þ is a Gaussian distribution with mean μ and variance σ2. The
mean μ of the noise distribution was chosen to be zero.

During generation, molecular representations were generated by
the start token <SOS> and hnew with sampling enhancement14,27. Three

types of sampling enhancement were implemented, namely, linear-
interpolation sampling [Linear, Eq. (7)], spherical-interpolation sam-
pling [Slerp, Eq. (8)], and single-point sampling [Sample, Eq. (9)]:

hij,α
0,new = Linear hi

0,h
j
0;α

� �
= ð1� αÞhi

0 +αh
j
0 ,α 2 0,1ð Þ ð7Þ

hij,β
0,new = Slerp hi

0,h
j
0;β

� �
=
sin 1� βð Þθ½ �

sinθ
hi
0 +

sinðβθÞ
sinθ

hj
0 ,β 2 0,1ð Þ ð8Þ

hi
0,new = Sample hi

0

� �
=hi

0 + ξs , ξs 2 N μs ,σ
2
s

� �
, ð9Þ

where α is the linear-interpolation factor, β is the spherical-
interpolation factor, θ is the central angle of hi

0 and hj
0, and ξs is a

random vector that has the same dimension as hi
0 and belongs to the

Gaussian distribution with mean μs and variance σ2
s .

All the parameters used in the GDL model are presented in Sup-
plementary Table 6. All software programswere implemented in Python
(v3.6.9) with the TensorFlow GPU backend (www.tensorflow.org,
v1.10.0). Additional details are provided in Supplementary Information,
including conversion between SMILES and word embedding matric
(Supplementary Note 1), regularization enhancement (Supplementary
Note 2), and sampling enhancement (Supplementary Note 3).

Evaluation of the GDL model
The performance of the GDL model was evaluated on subsets ran-
domly selected from the sourcedata or the target data. To evaluate the
reconstruction capability of the GDL model, we used 100,000 mole-
cules from the source data and 1000molecules from the target data as
subsets, and the criterion was the reconstructed rate (R%, Eq. (10)):

R%=
Mrecon

Nrecon
× 100%, ð10Þ

where Nrecon is the number of subset molecules used for evaluation of
reconstruction capability, and Mrecon is the number of molecules that
are reconstructed correctly by the GDL model. We evaluated the per-
formances ofmodels trainedusing six trainingmethods: (1) training on
the source data; (2) training on the target data; (3) training with
transfer learning on the source and the target data; (4) training with
regularization enhancement on the source data; (5) training with reg-
ularization enhancement on the target data; and (6) training with
transfer learning and regularization enhancement on the source and
the target data. To further evaluate the generation capability, we used
100 molecules from either the source data or the target data, respec-
tively. The models were trained using four training methods with
qualified reconstructed capability: (1) training on the source data; (2)
training with transfer learning on the source and the target data; (3)
training with regularization enhancement on the source data; and (4)
training with transfer learning and regularization enhancement on the

Fig. 8 | RI-962amelioratesTNFα-inducedSIRS.C57BL/6 femalemice (n = 14)were
treated with vehicle, RI-962 (40mg/kg), or GSK3145095 (40mg/kg) via intraper-
itoneal injection for 15min followed by the tail vein injection of mouse TNFα
(300μg/kg). At 6 h after TNFα injection, four mice in each group were killed at
random, and the serums, hearts, livers, spleens, lungs, and kidneys were collected
for analysis. a Survival rates of themice treatedwith vehicle (n = 10), RI-962 (n = 10),
andGSK3145095 (n = 10) after TNFα injection. ***p-value < 0.001byGehan-Breslow-
Wilcoxon test. b Body temperature loss in themice treatedwith vehicle (n = 14), RI-
962 (n = 14), and GSK3145095 (n = 14) after TNFα injection. Data are presented as
mean ± standard deviation, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001 by
two-tailed unpaired Student’s t-test. c, d The mice (n = 4) were killed at 6 h after
TNFα administration, and the serum concentrations of IL-1β and IL-6 were mea-
sured using ELISA kits. Data are presented as mean± standard deviation,

**p-value < 0.01, ***p-value < 0.001 by two-tailed unpaired Student’s t-test. e The
mice (n = 4) were killed at 6 h after TNFα administration, and the liver and kidney
tissues were collected for analysis. Representative images of the histological ana-
lyses of the liver and kidney tissues byH&E staining (scale bar = 100μm).Magnified
views of theboxed regions for each image are shownbelow (scale bar = 20μm).The
black arrow represents portal area inflammatory cell infiltration, and the blue arrow
represents glomerular neutrophil infiltration. f Liver proteins were tested by wes-
tern blot to detect RIPK1, pRIPK1, RIPK3, pRIPK3, MLKL, and pMLKL with corre-
sponding antibodies. β-actin was used as an internal control. Western blot
represents threemice from each group. Molecular weight (Mw)markers are shown
at right. Data were obtained from two independent experiments. Source data are
provided as a Source Data file.
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Fig. 9 | RI-962 reduces inflammation in acute DSS-induced colitis.DSS (3%) was
administered to C57BL/6 female mice via drinking water for 7 d. After 7 d, the DSS
water was replaced with fresh water. Vehicle, RI-962 (40mg/kg), or GSK3145095
(40mg/kg) was injected intraperitoneally once a day for 10 d. a Body weight
changes in the mice treated with vehicle (n = 9), RI-962 (n = 10), and GSK3145095
(n = 10) after the DSS induction of colitis. Data are presented as mean ± standard
deviation, **p-value < 0.01, ***p-value < 0.001 by two-tailed unpaired Student’s t-
test. b, c The mice (n = 3) were sacrificed after the DSS induction of colitis for 7 d,
and the lengths of the colons from each group of mice were measured. Data are
presented as mean± standard deviation, ***p-value < 0.001 by two-tailed unpaired
Student’s t-test.d, eThemice (n = 3) in each groupwere sacrificed on day 7, and the
colon tissues were collected for analysis. d Representative H&E staining of the
colon tissues from the mice on day 7 (scale bar = 50μm). e Representative

immunohistochemical staining of colon tissues harvested on day 7 and stained for
S100a9 with the corresponding antibodies (scale bar = 50 μm). f Survival rates of
mice treated with vehicle (n = 6), RI-962 (n = 7), and GSK3145095 (n = 7) after the
DSS induction of colitis. **p-value < 0.01 by Gehan-Breslow-Wilcoxon test. g–i On
day 7, three mice (n = 3) in each group were killed, and the TNFα, IL-6, and IL-1β
concentrations in the supernatant of the cultured colon tissues were measured by
ELISA. Data are presented as mean ± standard deviation, *p-value < 0.05, **p-
value<0.01, ***p-value < 0.001 by two-tailed unpaired Student’s t-test. j Colonic
proteins on day 7 were tested by western blot to detect RIPK1, pRIPK1, RIPK3,
pRIPK3, MLKL, and pMLKL with corresponding antibodies. β-actin was used as an
internal control. Western blot represents three mice from each group. Molecular
weight (Mw)markers are shown at right. Datawereobtained from two independent
experiments. Source data are provided as a Source Data file.
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source and the target data. The generation capabilities of these trained
models were then evaluated using the generative rate (G%, Eq. (11)) as a
criterion:

G%=
Mgen

Ngen
× 100%, ð11Þ

where Ngen is the number of subset molecules used for the evaluation
of generation capability, and Mgen is the number of molecules gener-
ated by the GDL model.

Calculations of molecular properties
To compare the similarity between different molecules in terms of
physicochemical properties, some important physiochemical para-
meters associated with drug-like properties were calculated, including
molecular weight (MW), the water–octanal partition coefficient
(LogP)58, the qualitative estimate of drug-likeness (QED)59, Bertz CT

60,
the topological polar surface area (TPSA)61, water solubility (LogS)62,
the number of rotatable bonds (rot), the number of H-bond donors
(HBD), and the number of H-bond acceptors (HBA). To visualize the
comparison results, histograms and kernel density estimation (KDE)
maps were drawn using Seaborn (https://seaborn.pydata.org/, v0.11.1).
For the drug-like compound screening, we used the following criteria:
200 ≤MW ≤ 700, −2 ≤ LogP ≤ 6, and 0.15 ≤QED. To avoid molecules
that are very difficult to synthesize, we calculated the synthetic
accessibility (SA) score63 and filtered out molecules with SA score > 5;
the SA scores indicate the complexity for synthesis, which ranges from
lower values (easy to synthesis) to high values (difficult to synthesis).
All calculations were carried out by using RDKit (https://rdkit.org/,
v2019.09.2.0).

Uniform manifold approximation and projection (UMAP)
To visualize the similarity relations between the source data, the target
data, and the generated data, we constructed UMAP plots37 (umap-
learn 0.4.6), which are two-dimensional representations of high-
dimensional data distributions, from 3000, 1000, and 2000 randomly
selected molecules from the source data, the target data, and the
generated data, respectively.

Scaffold and fingerprint diversity
Scaffold and fingerprint diversity were analyzed and visualized using
the Platform for Unified Molecular Analysis (PUMA)40 (https://www.
difacquim.com/d-tools/) with 1000molecules randomly selected from
the source data, the target data, the generated data, and the filtered
molecules, respectively.

Full-feature pharmacophore map
The Discovery Studio (version 3.1) program package was used to
generate a full-feature pharmacophore map for RIPK1 inhibitors. 13
crystallographic structures of RIPK1-inhibitor complexes were col-
lected from the protein data bank (PDB)64 (Supplementary Note 4).
Taking 4NEU as the reference structure, the MODELER was used for
structural alignment with default parameters settings. We then per-
formed the Receptor-Ligand Pharmacophore Generation protocol for
the automatic construction of three-dimensional pharmacophores
based on the previously aligned structures. All the identified pharma-
cophore features including hydrogen bond donor (HDB/D), hydrogen
bond acceptor (HAD/A), hydrophobic (HYD/H), positive ionizable (PI),
negative ionizable (NI), ring aromatic (RA), and excluded volume fea-
tures were clustered according to their interaction pattern with the
receptor. Finally, 11 clustered features including two hydrogen bond
acceptors (A1–A2), three hydrogen bond donors (D1–D3), and six
hydrophobic features (H1–H6) were selected to form the full-feature
pharmacophore map41,42. After generating multiple molecular con-
formations, the screening procedure was carried out, resulting in a set

of molecules with at least four matched pharmacophore features
ranked based on their fit values. More details are provided in Supple-
mentary Note 4.

Molecular docking
The GOLD program was adopted for molecular docking with Gold-
Score being used as the scoring function65,66. To achieve a better
screening, flexible dockingwasperformed. The receptor structurewas
taken from the protein data bank (PDB)64 (PDB entry: 4ITH). In order to
accelerate flexible docking, we set limited residues to be flexible. By
comparison between X-ray crystal structures of RIPK1 in complex with
different ligands, we found that, among all the residues forming the
active pocket (including the ATP-binding pocket and the allosteric
site), nine residues often display a large displacement, including V31,
I43, K45, M67, L70, M92, L157, L159, and F162. Therefore, the side-
chains of the nine residues were defined as flexible sidechains in the
program setting. The binding site was defined as the area within 10 Å
around the 4ITH ligand, and other parameters were set to default
values. The entire process of molecular docking was implemented in
Discovery Studio 3.1.

Tree maps (TMAPs)
For the unsupervised visualization of high-dimensional data, a TMAP43

(tmap 1.0.4; faerun 0.3.20) creates a two-dimensional layout of a
minimum spanning tree constructed in the original space. In this
study, TMAPswere used to visualize RECAP44-based (rdkit 2019.09.2.0)
structural similarity among the filtered molecules. Each TMAP shows
themolecules asdotswith up to three concentric circles: the first circle
depicts the molecule properties (including MW, LogP, SA score, and
QED) or docking scores (colored from red to yellow to green, moving
from the maximum value to the minimum value); the second circle
depicts the RECAP fragment number of a molecule (colored by the
number of RECAP fragments).

Chemical synthesis
The primary synthetic data are available in the Supplementary
Methods.

Cell lines and cell culture conditions
The cell lines used in this investigation were purchased from the
American Type Culture Collection (ATCC). HT29, L929, HEK 293T and
J774A.1 cells were cultured in DMEM (Gibco) supplemented with 10%
fetal bovine serum, 100U/mL penicillin, and 100U/mL streptomycin.
U937 cells were cultured in RPMI-1640 (Gibco) culture medium sup-
plemented with 10% fetal bovine serum, 100U/mL penicillin, and
100U/mL streptomycin. Sf9 cells were cultured in SIM SF (Sino Bio-
logical Inc.) supplemented with 50U/mL penicillin, and 50U/mL
streptomycin. HT29, L929, HEK 293T, U937 and J774A.1 cells incuba-
tionswereperformedat 37 °Cunder 5%CO2. Sf9 cells incubationswere
performed at 27 °C. All cells were negative for mycoplasma, and these
cell lines are not among those commonly misidentified by Interna-
tional Cell Line Authentication Committee (ICLAC).

Cell necroptosis protection assay
Cell necroptosis protection assays were performed in 96-well cell
culture plates. Cells were plated in each well and cultured at 37 °C
overnight. HT29, U937, and J774A.1 cells were treated with 10 ng/mL
TNFα, 100 nM Smac mimetic, and 40μM z-VAD-FMK for 24 h. L929
cells were treatedwith 10 ng/mLTNFα and 40μMz-VAD-FMK for 24 h.
The cell survival rate was determined using a CCK8 cell viability assay
kit and CLARIOstar (v5.61). The concentration–response curve was
fitted using Graph-Pad Prism 8.0 (GraphPad Software) to calculate the
50% effective concentration (EC50). All experimentswere performed at
least two times, and each EC50 valuewas expressed asmean± standard
deviation (SD).
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Dual staining with CytoCalcein Violet 450 and 7-AAD
The assay of dual staining with CytoCalcein Violet 450 and 7-AAD was
performed in a 24-well cell culture plate. Cells were plated in each well
and cultured at 37 °Covernight. HT29 cellswere treatedwith 10 ng/mL
TNFα, 100 nMSmacmimetic, and 40μMz-VAD-FMK for 24 h. Thenuse
CytoCalcein Violet 450 and 7-AAD to double stain the HT29 cells and
observe under the microscope. All images were acquired with an
Eclipse Ci-L microscope (Nikon, Japan). The dead cells were measured
with Image J software, and the data was analyzed with GraphPad
software. The experiment was repeated three times.

CRISPR/Cas9-mediated RIPK1 knockout in HT29 cells
The lentiCRISPRv2 vector targeting RIPK1 (sgRNA, 5’-
CTCGGGCGCCATGTAGTAGA-3’) was constructed by the Azenta
company. HEK 293 T cells were transfected with lentiCRISPRv2 tar-
geting RIPK1 and empty vector using Hieff TransTM Liposomal Trans-
fection Reagent (Yeasen), respectively. The viruses were collected at
24 h and 48 h, respectively, filtered with a 0.45mm filter head, and
then added to the virus concentrate and treated at 4 °C overnight. The
concentrated viruses were added to HT29 cells along with 8μg/mL of
polybrene (Yeasen) to enhance transfection efficiency. The infection
assay was repeated in the next day under the same conditions. Finally,
HT29 cells were screened with 3μg/mL puromycin. Western blot
analysis was used to confirm the RIPK1 deletion.

Western blot analysis
Cell pellets were collected and resuspended in RIPA lysis buffer
(Beyotime), to which phenylmethylsulfonyl fluoride, a proteasome
inhibitor, and a phosphatase inhibitor cocktail (Sigma) had been
added.Whole-cell protein lysates were incubated on ice for 15min and
centrifuged at 13,800 × g and 4 °C for 15min. The supernatants were
collected and subjected to western blot analysis.

The liver in the SIRS model and the colon in the IBD model were
harvested, homogenated and sonicated in RIPA lysis buffer. The
supernatants were collected after centrifuged at 13,800 × g and 4 °C
for 15min.

The cell proteins or tissue proteins were separated in a poly-
acrylamide gel and transferred to amethanol-activated polyvinylidene
fluoride membrane. The membrane was blocked for 2 h in Tris-
buffered saline plus Tween-20 containing 5% milk and then immuno-
blotted sequentially with primary and secondary antibodies. Detection
was performed with an ECL chemiluminescence kit (Abbkine). The
antibodies used were human RIPK1 antibody (R&D, 334640, 1:1000),
mouse RIPK1 antibody (Affinity, DF2642, 1:1000), human phospho-RIP
(Ser166) rabbit mAb (Cell Signaling Technologies, 65746, 1:1000),
mouse phospho-RIP (Ser321) rabbit mAb (Cell Signaling Technologies,
38662, 1:1000), human RIPK3 (B-2) antibody (Santa Cruz, sc-374639,
1:250), mouse RIPK3 antibody (Abcam, ab62344, 1:1000), human anti-
RIP3 (phospho S227) antibody (Abcam, ab209384, 1:2000), mouse
anti-RIP3 (phospho T231 + S232) antibody (Abcam, ab205421, 1:500),
anti-MLKL (58–70) antibody (Sigma, M6697, 1:250), human anti-MLKL
(phospho S358) antibody (Abcam, ab187091, 1:1000), mouse anti-
MLKL (phospho S345) antibody (Abcam, ab196436, 1:1000), and β-
actin (Proteintech, 66009-1-Ig, 1:1000).

Protein preparation and crystallization
The RIPK1 protein expression and purification were carried out fol-
lowing the similar protocols as those in literature45. The human RIPK1
kinase domain containing residues 1–294 with four cysteine-to-alanine
mutations (C34A, C127A, C233A, and C240A) was cloned into the
vector pFastbacHAT (completed by the Azenta company). The
recombinant virus containing RIPK1 was generated using the Bac-to-
Bac baculovirus expression system and infected Sf9 cells. After infec-
tion by baculoviruses for 48 h, the cells were harvested in a buffer
containing 25mM Tris (pH 7.6), 1M NaCl, 0.5mM TCEP, and 20mM

imidazole. The RIPK1 kinase domain was purified to homogeneity
using a nickel resin column. The protein was eluted in buffer con-
taining 250mM imidazole. The N-terminal tag was cleaved by TEV
protease, and the protein was further purified using a Superdex 200
gel filtration column (GE Healthcare) and finally using a MonoQ col-
umn (GE Healthcare). The purified RIPK1 was concentrated to
10.693mg/mL in a buffer containing 25mM Tris-HCl pH 7.9, 150mM
NaCl, and 0.5mM TCEP.

Crystals of the RIPK1 in complex with RI-962 (final concentration
of 1mM added to the protein) were obtained by co-crystallization via
hanging drop vapor diffusion. Crystals were obtained from solution
(0.25M NH4I, 23% polyethylene glycol 3350, and 0.03M glycyl-glycyl-
glycine) and grew to full size in ~1 week. The crystals were harvested
after cryo-protection in 10% ethylene glycol and flash-frozen in liquid
nitrogen for data collection.

Data collection and refinement of RIPK1
All diffraction datasets were collected on beamline BL19U1 of the
Shanghai Synchrotron Radiation Facility and processed using
HKL200067. Further data processing was carried out using programs
from the CCP4 suite68. Structures were determined by molecular
replacement using a previously published structure (PDB ID: 4ITJ)45 as
the starting model. Manual model rebuilding and refinement were
iteratively performed with Coot69 and Phenix70, respectively. The
crystal of RI-962-bound RIPK1 is in the space group, P212121. Each
asymmetric unit contains two molecules of RIPK1. The statistics and
refinement values of the crystal structure are shown in Supplementary
Table 5.

In vitro kinase activity assays
In vitro kinase activity assays were conducted through the Kinase
Profiling Services provided by Eurofins (Eurofins, France). The proto-
col for the RIPK1 assay is briefly described as follows (Protocols for
other kinases are very similar and can be found in http://www.eurofins.
com/pharmadiscovery). RIPK1 kinase was incubated with the test
compound in assay buffer containing 8mM MOPS (pH 7.0), 0.2mM
EDTA, 250μM KKKSPGEYVNIEFG, 10mM magnesium acetate, and
10μM [γ-33P]-ATP for 15min at room temperature. The reaction was
initiated by the addition of the Mg/ATP mixture. After incubation for
40min at room temperature, and the reaction was stopped by the
additionof 3%phosphoric acid. A 10μLportionof the reactionmixture
was then spotted onto a P30 filtermat andwashed four times for 4min
in 0.425% phosphoric acid and once in methanol prior to drying and
scintillation counting.

Source of animals
C57BL/6 mice were purchased from GemPharmatech Co., Ltd. All
mice were bred under standard conditions and used at the age of
6–8 weeks when the body weight was ~20 g. All procedures related
to animal handling, care and treatment in in vivo efficacy studies
were performed according to the guidelines approved by the Insti-
tutional Animal Care and Use Committee (IACUC) of West China
Hospital, Sichuan University (20211062A). All procedures related to
animal handling, care and treatment in pharmacokinetic (PK) stu-
dies were performed according to the guidelines approved by the
Institutional Animal Care and Use Committee (IACUC) of Shanghai
Medicilon Inc.

The TNFα-induced SIRS experiment
C57BL/6 female mice were first fasted for 12 h (given water) and then
the C57BL/6 female mice were pretreated with vehicle, RI-962 (40mg/
kg), or GSK3145095 (40mg/kg; GSK3145095 was purchased from
NewCompoundMarket Pharmatech Co. Ltd.) via intraperitoneal
injection for around 15min and then challenged with mouse TNFα
(300μg/kg) via tail intravenous injection. The body temperatures of
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the mice were continuously monitored until 6 h after TNFα adminis-
tration. At 6 h after TNFα injection, fourmice in each groupwere killed
at random, and the serums,heart, liver, spleen, lung, andkidney tissues
were collected for analysis. Mice mortality was continuously mon-
itored until 72 h after TNFα administration.

The DSS-induced IBD experiment
DSS (3% w/v) was administered in drinking water ad libitum for 7 d
(from day 0 to day 7). DSS solution was replaced three times on day 2,
day 4, and day 6. C57BL/6 female mice were injected intraperitoneally
with vehicle, RI-962 (40mg/kg), or GSK3145095 (40mg/kg) for 10 d
(from day 0 to day 9). Threemice in each group were killed at random
on day 7, and distal colon tissues were collected for analysis. The mice
weight and survival rate were recorded daily.

Assessment of pharmacokinetic (PK) properties
The PK properties of compounds were examined in male Sprague-
Dawley rats (n = 3 per group, weight: 180–220 g). Compounds were
dissolved in saline with 5% (v/v) DMSO plus 40% (v/v) PEG400. The
animals were administered with a single dose of 5mg/kg (intravenous
injection (i.v.)), 20mg/kg (intraperitoneal injection (i.p.) or oral gavage
(p.o.)). Blood samples were collected at 0.083, 0.25, 0.5, 1, 2, 4, 6, 8, 10
and 24 h, and centrifuged to isolate plasma. Subsequently, the plasma
compound concentrations were determined by LC-MS/MS-13
(TQ5500, SCIEX), and the PK parameters were calculated using Phoe-
nix WinNonlin 7.0.

Enzyme-linked immunosorbent assay (ELISA)
In the TNFα-induced SIRSmodel, at 6 h after TNFα injection, fourmice
in each group were killed at random, and the serums were collected,
the serum concentrations of IL-1β and IL-6 weremeasured using ELISA
kits (Neobioscience Technology) according to manufacturer’s
instructions. On day 7 of experimental DSS-induced colitis, the distal
colon tissueswere harvested, washedwith PBS, sliced into small pieces
with sizes of ~1mm3, and cultured with serum-free RPMI-1640medium
(1mL/100mg colon tissue) for 12 h. The supernatant was collected by
sequential centrifugation at 500 × g for 10min and 3000× g for
10min. The concentrations of cytokines TNFα, IL-6, and IL-1β were
measured using ELISA kits (Neobioscience Technology).

Histological analysis and immunohistochemistry staining
The heart, liver, spleen, lung, kidney and colon tissues were fixed
directly in 4% paraformaldehyde (24 h), embedded in paraffin, and
stained with H&E following standard procedures. All images were
acquired using a Pannoramic MIDI scanner.

The colon tissueswere fixed in 4%paraformaldehyde for 24 h. The
tissues were sliced to a thickness of 5 µM, deparaffinized with xylene,
and rehydrated with graded ethanol. The tissue sections were then
placed in a repair box filled with citric acid (pH 6.0) antigen retrieval
buffer for antigen retrieval in a microwave oven followed by the
quenching of endogenous peroxidase activity in 3% hydrogen per-
oxide. The sections were incubated overnight at 4 °C with primary
antibody (S100a9, 73425, CST), which was prepared in PBS (pH 7.4)
according to the manufacturer’s instructions. The sections were then
washed three times with PBS, incubated for 1 h with the appropriate
secondary antibodies, and staining with freshly prepared DAB color
developing solution. Subsequently, the sections were counterstained
with hematoxylin andmounted in non-aqueousmountingmedium. All
images were acquired using a Pannoramic MIDI scanner.

Statistical analysis
Data on figures represent mean± standard deviation (SD). Unless
otherwise noted, the differences between two groups were analyzed
by unpaired Student’s t-test, and differences with p-value < 0.05 were
considered significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The SDF file of the generated data has been deposited in the Zenodo
repository under https://doi.org/10.5281/zenodo.6451205. The crystal
structure of the RIPK1–RI-962 complex has been deposited in the
Protein Data Bank (PDB) under accession code 7YDX. The crystal
structures of RIPK1 used in this study are available in the Protein Data
Bank (PDB) under accession codes 4ITJ, 4ITI, 4ITH, 4NEU, 5HX6, 5TX5,
6C4D, 6HHO, 6NW2, 6R5F, 6OCQ, 6NYH, and 6RLN. All other data that
support the conclusions are available from the corresponding authors
on reasonable request. Source data are provided with this paper.

Code availability
Computer codes of our GDL model are provided as Supplementary
Software and have been deposited in the Zenodo repository under
https://doi.org/10.5281/zenodo.7074218.
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